
Tools for Fast Morphological Analysis
Based on Finite State Automata

Pavel Šmerk

Natural Language Processing Centre
Faculty of Informatics
Masaryk University

6. 12. 2014

Pavel Šmerk (NLPC FI MU) Tools for Fast Morphological Analysis 6. 12. 2014 1 / 7



Introduction

• new implementation of (some of) Jan Daciuk’s algorithms and tools
for morphological analysis based on finite state automata

• in particular reimplemented version of
• tool which builds the automata from an input set of strings
• tool which performs the morphological analysis itself

• both tools are faster and with significantly smaller/simpler code
• + unicode-aware versions

Pavel Šmerk (NLPC FI MU) Tools for Fast Morphological Analysis 6. 12. 2014 2 / 7



Data for Morphological Analysis

• list of strings query:answer
• pairs of words are encoded as the first word and the difference

ježek:A:k1gMnSc1 ← ježek:ježek:k1gMnSc1
ježka:Cek:k1gMnSc2 ← ježka:ježek:k1gMnSc2
ježka:Cek:k1gMnSc4 ← ježka:ježek:k1gMnSc4
krtek:A:k1gMnSc1 ← krtek:krtek:k1gMnSc1
krtka:Cek:k1gMnSc2 ← krtka:krtek:k1gMnSc2
krtka:Cek:k1gMnSc4 ← krtka:krtek:k1gMnSc4

• raw list is too big, but taken as an formal language, we can construct
minimal deterministic FSA of feasible size

• incremental minimization algorithm, where the FSA is minimal during
construction, was invented by Jan Daciuk

Pavel Šmerk (NLPC FI MU) Tools for Fast Morphological Analysis 6. 12. 2014 3 / 7



Data for Morphological Analysis

• deterministic FSa

j
e ž e k : A : k 1 g M n S c 1

k a : C e k : k 1 g M n S c 2
4

k
r t e k : A : k 1 g M n S c 1

k a : C e k : k 1 g M n S c 2
4

• deterministic FSA after minimization

j
e ž e k : A : k 1 g M n S c 1

k a : C e k : k 1 g M n S c 2
4

k
r t

e

k

• “analysis” is only fast and simple pass through this FSA
• deterministic pass through the FSA according to the “query”
• and recursive retrieval of all possible “answers”

Pavel Šmerk (NLPC FI MU) Tools for Fast Morphological Analysis 6. 12. 2014 4 / 7



Experiments

• data sets
data set input size words (lines) output size
EN 1,417,920 88,652 244,764
RU 114,605,988 2,844,516 3,639,960
CZ free 105,001,670 3,393,080 931,594
CZ full 828,973,970 27,764,093 3,795,423

• build times in seconds for the three compared tools
data set fsa_build morfologik new implem.
EN 0.24 0.59 0.08
CZ free 12.63 7.50 4.19
RU 26.04 10.19 9.41
CZ full 121.41 57.21 41.71

• morfologik is java implementation of the builder (Dawid Weiss)

Pavel Šmerk (NLPC FI MU) Tools for Fast Morphological Analysis 6. 12. 2014 5 / 7



Size of Code

• another advantage of the new implementation is the size of code
• Daciuk’s implementation includes many compile time options, but
even after “unifdeffing” the code remains rather complicated

• files needed for the builder
• Daciuk: 1250 lines, 35 kB
• new code: 250 lines, 10 kB

• files needed for the analyser
• Daciuk: 900 lines, 25 kB
• new code: 230 lines, 8 kB

• it’s easier to improve the more simple code
• we change the edges to have labels of variable size which allows for

utf-8 labelled edges
• ⇒ the analyzer can easily do the case conversions or diacritics

restoration

Pavel Šmerk (NLPC FI MU) Tools for Fast Morphological Analysis 6. 12. 2014 6 / 7



Future Work

• the new tools are ready to use, but it is still a work in progress :-)
• we want to reduce

• compile time: simple hash instead of Daciuk’s “treetable”
• run space: VLEncoded information, relative adresses, . . .
• run time: smaller run space

• for unicode versions, codepoint may perform better than utf-8
• for the morphological analysis, tags or may be whole “answers” could
be stored directly in memory

Pavel Šmerk (NLPC FI MU) Tools for Fast Morphological Analysis 6. 12. 2014 7 / 7


