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Introduction

• new implementation of (some of) Jan Daciuk’s algorithms and tools
for morphological analysis based on finite state automata

• in particular reimplemented version of
• tool which builds the automata from an input set of strings
• tool which performs the morphological analysis itself

• both tools are faster and with significantly smaller/simpler code
• + unicode-aware versions
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Data for Morphological Analysis

• list of strings query:answer
• pairs of words are encoded as the first word and the difference

ježek:A:k1gMnSc1 ← ježek:ježek:k1gMnSc1
ježka:Cek:k1gMnSc2 ← ježka:ježek:k1gMnSc2
ježka:Cek:k1gMnSc4 ← ježka:ježek:k1gMnSc4
krtek:A:k1gMnSc1 ← krtek:krtek:k1gMnSc1
krtka:Cek:k1gMnSc2 ← krtka:krtek:k1gMnSc2
krtka:Cek:k1gMnSc4 ← krtka:krtek:k1gMnSc4

• raw list is too big, but taken as an formal language, we can construct
minimal deterministic FSA of feasible size

• incremental minimization algorithm, where the FSA is minimal during
construction, was invented by Jan Daciuk

Pavel Šmerk (NLPC FI MU) Tools for Fast Morphological Analysis 6. 12. 2014 3 / 7



Data for Morphological Analysis

• deterministic FSa

j
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k a : C e k : k 1 g M n S c 2
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k a : C e k : k 1 g M n S c 2
4

• deterministic FSA after minimization
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• “analysis” is only fast and simple pass through this FSA
• deterministic pass through the FSA according to the “query”
• and recursive retrieval of all possible “answers”
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Experiments

• data sets
data set input size words (lines) output size
EN 1,417,920 88,652 244,764
RU 114,605,988 2,844,516 3,639,960
CZ free 105,001,670 3,393,080 931,594
CZ full 828,973,970 27,764,093 3,795,423

• build times in seconds for the three compared tools
data set fsa_build morfologik new implem.
EN 0.24 0.59 0.08
CZ free 12.63 7.50 4.19
RU 26.04 10.19 9.41
CZ full 121.41 57.21 41.71

• morfologik is java implementation of the builder (Dawid Weiss)
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Size of Code

• another advantage of the new implementation is the size of code
• Daciuk’s implementation includes many compile time options, but
even after “unifdeffing” the code remains rather complicated

• files needed for the builder
• Daciuk: 1250 lines, 35 kB
• new code: 250 lines, 10 kB

• files needed for the analyser
• Daciuk: 900 lines, 25 kB
• new code: 230 lines, 8 kB

• it’s easier to improve the more simple code
• we change the edges to have labels of variable size which allows for

utf-8 labelled edges
• ⇒ the analyzer can easily do the case conversions or diacritics

restoration
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Future Work

• the new tools are ready to use, but it is still a work in progress :-)
• we want to reduce

• compile time: simple hash instead of Daciuk’s “treetable”
• run space: VLEncoded information, relative adresses, . . .
• run time: smaller run space

• for unicode versions, codepoint may perform better than utf-8
• for the morphological analysis, tags or may be whole “answers” could
be stored directly in memory
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