
Text Tokenisation Using unitok

Jan Michelfeit, Jan Pomikálek, V́ıt Suchomel

Natural Language Processing Centre
Faculty of Informatics
Masaryk University

and
Lexical Computing Ltd.

5 December 2014

Introduction

The aim of this work was to develop a tokeniser

fast – able to process big data in billion word sized corpora,

reliable – robust to deal with messy web data,

universal – allowing at least basic support for all writing
systems utilizing a whitespace to separate words,

easy to maintain – adding new tokenisation rules or making
corrections based on evaluation should be straightforward,

text stream operating – text in, tokenised text (one token per
line) out,

reversible – the tokenised output must contain all information
needed for reconstructing the original text.

Implementation

Python script utilising the re library and operating on a text
stream.

The input text is decoded to unicode, normalised (‘&’,
whitespace), scanned for sequences forming tokens, the tokens
are separated by line breaks and the result vertical is encoded
into the original encoding.

Sequences of letters, numbers, marks, punctuation, and
symbols are clustered together. SGML markup is preserved.
URLs, e-mail addreses, DNS domains, IP addresses, general
abbreviations are recognized.

Predefined language specific rules: clitics (‘d’accord ’),
abbreviations (‘nap̌r.’), or special character rules (Unicode
0780-07bf = Maldivian script Thaana).

Reversibility of tokenisation

A ‘glue’ XML element inserted between tokens not separated
by a space in the input data.

Plaintext → unitok → vertical → vert2plain → plaintext.

The

"

<g/>

end

<g/>

"

<g/>

.

Evaluation – tokenising speed and output size

Language tool output tokens rel tok duration tok/s rel tok/s

English Unitok 207,806,261 100% 6,880 s 30,200 100%
TTWrapper 200,122,178 −3.70% 2,380 s 84,100 +178%
Freeling 215,790,562 +3.84% 2,670 s 80,800 +168%

Spanish Unitok 196,385,184 100% 6,250 s 31,400 100%
TTWrapper 204,867,056 +4.32% 2,260 s 90,600 +188%
Freeling 201,413,272 +2.56% 2,040 s 98,700 +214%

German Unitok 171,354,427 100% 5,530 s 31,000 100%
TTWrapper 179,120,243 +4.53% 2,360 s 75,900 +145%

French Unitok 202,542,294 100% 6,400 s 31,600 100%
TTWrapper 242,965,328 +20.0% 2,870 s 84,700 +168%
Freeling 211,517,995 +4.43% 2,300 s 92,000 +191%

Russian Unitok 98,343,308 100% 3,170 s 31,023 100%
Freeling 102,565,908 +4.29% 1,450 s 70,800 +128%

Czech Unitok 183,986,726 5,960 s 30,900

Evaluation

Comments

noticeable difference between the tools in the number of
output tokens,

unitok was the slowest of the three tools but still quite
sufficient for fast processing of large text data,

Freeling (with proper settings) recognises numbers, dates,
even named entities (turned off) – might be useful,

unitok and TTWrapper deal well with internet mess (still
problems in recognising some emoticons).

We use

Freeling for Spanish, Protuguese, Catalan,

unitok for other languages with spaces between words,

specialised tools for other languages (e.g. Stanford Segmenter
for Chiese).

Conclusion

unitok is a tokeniser for texts with spaces between words.

It has been successfully used for tokenising large web corpora.
[Jakub́ıček et al: The tenten corpus family, 2014]

The main benefits:

good coverage of various sequences of characters, especially
web phenomena,
normalisation of messy control or whitespace characters,
reversibility of the tokenised output,
extensibility by language specific rules (similarly to
TTWrapper).

The Problem of Words

What is a word, what is a sentence? Problems of
Tokenisation. [Grefenstette, 1994]

Our approach: corpus search – concordancer and other corpus
inspection tools. What tokens are expected to figure in the
corpus based analysis (such as word frequency lists,
collocations, thesaurus)?

The users search for sequences of letters.

Sequences of numbers, marks, punctuation, symbols,
separators and other characters should be clustered together
in order to be counted as single tokens in corpus statistics.

