Text Tokenisation Using unitok

Jan Michelfeit, Jan Pomikalek, Vit Suchomel

Natural Language Processing Centre
Faculty of Informatics
Masaryk University

and
Lexical Computing Ltd.

5 December 2014

Introduction

aim of this work was to develop a tokeniser
fast — able to process big data in billion word sized corpora,
reliable — robust to deal with messy web data,

universal — allowing at least basic support for all writing
systems utilizing a whitespace to separate words,

easy to maintain — adding new tokenisation rules or making
corrections based on evaluation should be straightforward,

text stream operating — text in, tokenised text (one token per
line) out,

reversible — the tokenised output must contain all information
needed for reconstructing the original text.

Implementation

@ Python script utilising the re library and operating on a text
stream.

@ The input text is decoded to unicode, normalised (‘&’,
whitespace), scanned for sequences forming tokens, the tokens
are separated by line breaks and the result vertical is encoded
into the original encoding.

@ Sequences of letters, numbers, marks, punctuation, and
symbols are clustered together. SGML markup is preserved.
URLs, e-mail addreses, DNS domains, IP addresses, general
abbreviations are recognized.

e Predefined language specific rules: clitics (‘d’accord’),

abbreviations (‘napf."), or special character rules (Unicode
0780-07bf = Maldivian script Thaana).

Reversibility of tokenisation

@ A ‘glue’ XML element inserted between tokens not separated
by a space in the input data.

o Plaintext — unitok — vertical — vert2plain — plaintext.

The
<g/>
end
<g/>

<g/>

Evaluation — tokenising speed and output size

Language tool output tokens rel tok duration tok/s rel tok/s
English Unitok 207,806,261 100% 6,880s 30,200 100%
TTWrapper 200,122,178 —3.70% 2,380s 84,100 +178%
Freeling 215,790,562 +3.84% 2,670s 80,800 +168%
Spanish Unitok 196,385,184 100% 6,250s 31,400 100%
TTWrapper 204,867,056 +4.32% 2,260s 90,600 +188%
Freeling 201,413,272 +2.56% 2,040s 98,700 +214%
German Unitok 171,354,427 100% 5,530s 31,000 100%
TTWrapper 179,120,243 +4.53% 2,360s 75,900 +145%
French Unitok 202,542,294 100% 6,400s 31,600 100%
TTWrapper 242,965,328 +20.0% 2,870s 84,700 +168%
Freeling 211,517,995 +4.43% 2,300s 92,000 +191%
Russian Unitok 98,343,308 100% 3,170s 31,023 100%
Freeling 102,565,908 +4.29% 1,450s 70,800 +128%
Czech Unitok 183,986,726 5,960s 30,900

Evaluation

Comments

@ noticeable difference between the tools in the number of
output tokens,

@ unitok was the slowest of the three tools but still quite
sufficient for fast processing of large text data,

o Freeling (with proper settings) recognises numbers, dates,
even named entities (turned off) — might be useful,

@ unitok and TTWrapper deal well with internet mess (still
problems in recognising some emoticons).

We use
@ Freeling for Spanish, Protuguese, Catalan,
@ unitok for other languages with spaces between words,

e specialised tools for other languages (e.g. Stanford Segmenter
for Chiese).

Conclusion

@ unitok is a tokeniser for texts with spaces between words.

@ It has been successfully used for tokenising large web corpora.
[Jakubitek et al: The tenten corpus family, 2014]
@ The main benefits:
e good coverage of various sequences of characters, especially
web phenomena,
e normalisation of messy control or whitespace characters,
e reversibility of the tokenised output,
o extensibility by language specific rules (similarly to
TTWrapper).

The Problem of Words

@ What is a word, what is a sentence? Problems of
Tokenisation. [Grefenstette, 1994]

@ Our approach: corpus search — concordancer and other corpus
inspection tools. What tokens are expected to figure in the
corpus based analysis (such as word frequency lists,
collocations, thesaurus)?

@ The users search for sequences of letters.

@ Sequences of numbers, marks, punctuation, symbols,
separators and other characters should be clustered together
in order to be counted as single tokens in corpus statistics.

