
Style Markers Based on Stop-word List

Jan Rygl and Marek Medved’

Natural Language Processing Centre
Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic

{rygl, xmedved1}@fi.muni.cz

Abstract. The analysis of author’s characteristic writing style and vocab-
ulary has been used to uncover the identity of authors of documents by
both manual linguistic approaches and automatic algorithmic methods.
The revealing of the gender, name, or age can help to expose pedophiles
in social networks, false product reviews on the Internet servers, or ma-
chine translations submitted as manually translated texts.
These problems are predominantly solved by a combination of stylometry
and machine learning techniques. Since the stylometry focuses on the
author’s style, word n-grams cannot be used as a style marker. Stop words
are not influenced by a topic of documents, therefore they can be used to
create style markers.
In this paper, we present a guidance on how to implement stop-word ex-
traction and to include stop-words based style markers into a multilingual
classification system based on the stylometry.

Keywords: style marker, stop-word list, corpus

1 Introduction

Anonymity is seen as the cornerstone of an Internet culture that promotes
sharing and free speech. However, anonymity can also lead to crime. The
uncovering of the true gender, name, or age of document authors can help to
expose pedophiles in social networks, false product reviews on the Internet
servers, or machine translations submitted as manually translated texts.

To reveal true identity of the document author, a variety of style markers
have been used, with better or worse results. Style markers are documents
features describing style and vocabulary of the author [1].

There are many stylometric features, such as word and sentence length, ty-
pography errors, vocabulary richness, punctuation marks, n-grams of syntactic
labels, . . . [2,3,4,5]

In the first place, a vector of at least 100 most frequent words was used in a vast
majority of recent approaches [6]. In the absence of stop-word sources, this paper
provides a technical report how to generate list of stop words and implement
style markers based on stop-word list including recommendation of tools for
text preprocessing.

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2014, pp. 85–89, 2014. c○ NLP Consulting 2014

mailto:\protect \T1\textbraceleft rygl, xmedved1\protect \T1\textbraceright @fi.muni.cz
http://www.muni.cz/people/1648
http://www.muni.cz/people/3692
http://raslan2013.nlp-consulting.net/

86 Jan Rygl and Marek Medved’

2 Text preprocessing

To extract stop words from texts, we need to preprocess documents. Therefore,
we advise to create a program for document preprocessing that takes raw text
or HTML document as an input and outputs document objects that consist of:

1. raw source document
2. document language
3. character set that is used in the document
4. plain text without any HTML tags except a paragraph tag and a link tag

where a diacritic check is provided on plain text’s words
5. tokenization of the plain text
6. morphological annotation of the tokenized text
7. lemmatization of the tokenized text

The language of input HTML text can be determined by langid tool (for
more information see [7,8]) that takes a text as a input and returns a language
code in ISO 639-1 standard. Than the character set is derived from the input
HTML text and it’s language by Chared [9] (developed at Masaryk University
in Brno). Information about the language of a document increases an accuracy
of encoding detecton, therefore we recommend to do language detection before
character set recognition.

Next we use lxml.html.clean from Python library (other tools depending
on your programming language can be used) and get rid of all HTML tags
except paragraph tags and links which can be useful for other style markers. In
this step we also process all plain text’s words by czaccent [10] (also developed
at Masaryk University in Brno) tool that provide completion of diacritics if a
word is spelled without or with incorrect diacritics. This process is necessary
only for languages using characters with diacritics.

In the following step, the text is tokenized. We recommend to use Uni-
tok [11] (universal tokenizing) program developed at Masaryk University in
Brno that splits text into tokens and add predefined XML-like tags:

– <doc> – beginning of the document
– <s> – beginning of the sentence
– </g> – omitted space between tokens
– . . .

After tokenization we pass the output into Desamb [12] tool (morphological
desambiguator). The desamb uses morphological analyzer Majka [13] to anno-
tate each word by morphological categories from the tagset of Majka and by
lemmas. Then the best fitting variant of morphological category and lemma is
selected for each token.

For our purposes we also train the Majka analyzer on Czech, Slovak and
English data, thus our system can operate with this three languages. The output
of desambiguation consists of morphological tags and lemmas for each token in
the text. Lemmas statistics can be used instead of tokens to create a stop-word
list used for style markers.

The whole process is illustrated in Figure 1.

Style Markers Based on Stop-word List 87

Text

langid
detect language

chared
detect encoding

lxml.html.clean
remove tags

czaccent
fix diacritics

unitok
tokenization

majka
add morphology

desamb
desambiguation

Document object

Fig. 1: Preprocessing text

3 Stop-word style markers

The purpose of this characteristic is to find the most frequent words (stop
words) of given language in the text and provide style marker values for them.

3.1 Stop-word extraction from a corpus

To obtain list of stop words of a given language, Sketch engine’s [14,15] freq
tool can be used on large corpora. We extracted stop words for Czech, Slovak
and English documents:

– for Czech stop words we use czTenTen corpus that consists of 5 069 447 935
tokens

– for Slovak stop words we use skTenTen corpus that consists of 876 003 720
tokens

– for English stop words we use enTenTen corpus that consists of 12 968 375
937 tokens

To extract stop-word lists using Sketch engine, you can use two console
commands:

command:
freqs $corpora ’[]’ ’word 0 tag 0’ > word_feq
freqs $corpora ’[]’ ’lemma 0 tag 0’ > lemma_feq

where $corpora is a name of the corpus. We used following corpora:

– sk: sktenten

88 Jan Rygl and Marek Medved’

– cs: cztenten12_8
– en: ententen12

The advantage of the Sketch engine is that is already contains corpora for
almost every world language. If you do not have access to the Sketch engine
and you have own corpora, you can generate stop words with frequencies using
bash command line tools or any programming language.

3.2 Style markers extraction

This characteristic can use two input types thus user can choose if the calcu-
lations operate with lemmas or tokens (word represents a lemma or a token).
Below we describe calculations on words but the same calculations can be pro-
vided on lemmas too.

We calculate two types of frequencies: the absolute frequency and the
relative frequency of stop words that appear in the input text. This characteristic
is used to generate three different predominant outputs:

1. relative frequencies of stop words:

countstop_word(document)
countword(document)

2. absolute differencies of absolute values of relative frequencies of words
from the corpus and relative frequencies of words in the input text∣∣∣∣∣ countstop_word(corpus)

countword(corpus)

∣∣∣∣∣−
∣∣∣∣∣ countstop_word(document)

countword(document)

∣∣∣∣∣
3. squared values of differencies of absolute values of relative frequencies of

words from the corpus and relative frequencies of words in the input text(
countstop_word(corpus)

countword(corpus)
−

countstop_word(document)
countword(document)

)2

The first method ignores corpus frequencies and it is suitable for scenarios
we are given stop-word lists, but frequencies are counted from an untrustwor-
thy corpus or are unknown. For other situations, we recommend other two
variants. The third variant is sensitive to big deviations from corpus frequen-
cies which can be important style marker.

4 Conclusions

The style markers based on stop-word lists are easily implemented. To gener-
ate own style markers we recommend to use mentioned methods or their alter-
natives for other programming languages. Style markers based on stop-word
lists are still considered to be very beneficial for the most of algorithms using
stylometry, therefore each software solving these problems should implement
them.

Style Markers Based on Stop-word List 89

Acknowledgements This work has been partly supported by the Ministry of
Education of CR within the LINDAT-Clarin project LM2010013.

References

1. Stamatatos, E., Fakotakis, N., Kokkinakis, G.: Automatic text categorization in terms
of genre and author. Computational Linguistics 26(4) (2000) 471–495

2. Mosteller, F., Wallace, D.L.: Inference and Disputed Authorship: The Federalist.
Addison-Wesley (1964)

3. Holmes, D.I.: Authorship attribution. Literary and Linguistic Computing 13(3)
(1998) 111–117

4. Juola, P.: Authorship Attribution. Foundations and Trends in Information Retrieval
1 (2006) 233–334

5. Grieve, J.: Quantitative authorship attribution: An evaluation of techniques. Literary
and Linguistic Computing 22(3) (2007) 251–270

6. Eder, M.: Style-markers in authorship attribution a cross-language study of the
authorial fingerprint. Studies in Polish Linguistics 2011(Volume 6 Issue 1) (2011)

7. Lui, M., Baldwin, T.: Cross-domain feature selection for language identification.
In: In Proceedings of 5th International Joint Conference on Natural Language
Processing. (2011) 553–561

8. Lui, M., Baldwin, T.: Langid.py: An off-the-shelf language identification tool. In:
Proceedings of the ACL 2012 System Demonstrations. ACL ’12, Stroudsburg, PA,
USA, Association for Computational Linguistics (2012) 25–30

9. Pomikálek, Jan and Suchomel, Vít: Chared: Character Encoding Detection with a
Known Language. In: Aleš Horák, Pavel Rychlý. RASLAN 2011, Tribun EU, 5th ed.
Brno (Czech Republic) (2011) 125–129

10. Rychlý, P.: CzAccent - Simple Tool for Restoring Accents in Czech Texts. In Horák,
A., Rychlý, P., eds.: 6th Workshop on Recent Advances in Slavonic Natural Language
Processing, Brno, Tribun EU (2012) 15–22

11. Michelfeit, J., Pomikálek, J., Suchomel, V.: Text Tokenisation Using unitok. In Horák,
A., Rychlý, P., eds.: 8th Workshop on Recent Advances in Slavonic Natural Language
Processing, Brno, Tribun EU (2014) 71–75

12. Šmerk, P.: K počítačové morfologické analýze češtiny (in Czech, Towards Com-
putational Morphological Analysis of Czech). PhD thesis, Faculty of Informatics,
Masaryk University (2010)

13. Šmerk, P.: Fast morphological analysis of czech. In: Proceedings of Third Workshop
on Recent Advances in Slavonic Natural Language Processing, Brno, Tribun EU
(2009) 13–16

14. Kilgarriff, A., Baisa, V., Bušta, J., Jakubíček, M., Kovář, V., Michelfeit, J., Rychlý, P.,
Suchomel, V.: The sketch engine: ten years on. Lexicography 1(1) (2014) 7–36

15. Kilgarriff, A., Baisa, V., Bušta, J., Jakubíček, M., Kovář, V., Michelfeit, J., Rychlý, P.,
Suchomel, V.: Statistics used in the sketch engine. (2014)

