
Character-based Language Model

Vít Baisa

Natural Language Processing Centre
Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic

xbaisa@fi.muni.cz

Abstract. Language modelling and also other natural language process-
ing tasks are usually based on words. I present here a more general yet
simpler approach to language modelling using much smaller units of text
data: character-based language model (CBLM).1 In this paper I describe
the underlying data structure of the model, evaluate the model using stan-
dard measures (entropy, perplexity). As a proof-of-concept and an extrin-
sic evaluation I present also a random sentence generator based on this
model.

Keywords: language model, suffix array, LCP, trie, character-based, ran-
dom text generator, corpus

1 Introduction

Current approaches to language modelling are based almost utterly on words.
To work with words, the input data needs to be tokenized which might be
quite tricky for some languages. The tokenization might cause errors which
are propagated to following processing steps. But even if the tokenization
was 100% reliable, another problem emerges: word-based language models
treat similar words as completely unrelated. Consider two words platypus
and platypuses. The former is contained in the latter yet they will be treated
completely independently. This issue can be sorted out partially by using
factored language models [1] where lemmas and morphological information
(here singular vs. plural number of the same lemma) are treated simultaneously
with the word forms.

In most systems, word-based language models are based on n-grams
(usually 3–4) and on Markov chain of the corresponding order where only a
finite and fixed number of previous words is taken into account. I propose a
model which tackles with the above-mentioned problems. The tokenization
is removed from the process of building the model since the model uses
sequences of characters (or bytes) from the input data. Words (byte sequences)
which share prefix of characters (bytes) are stored on the same place in the

1 I call this ChaRactEr-BasEd LangUage Model (CBLM) cerebellum: a part of human
brain which plays an important role in motor control and which is involved also in
some cognitive processes including language processing.

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2014, pp. 3–10, 2014. c○ NLP Consulting 2014

mailto:xbaisa@fi.muni.cz
http://www.muni.cz/people/1648
http://www.muni.cz/people/3692
http://raslan2013.nlp-consulting.net/


4 Vít Baisa

model. The model uses suffix array and trie structure and is completely
language independent.

The aim of CBLM is to make language modelling more robust and at
the same time simpler: with no need for interpolating, smoothing and other
language modelling techniques.

2 Related work

Character-based language models are used very rarely despite they are de-
scribed frequently in theoretical literature. That is because a standard n-gram
character-based language models would suffer from very limited context: even
10-grams are not expressive enough since they describe only very limited width
of context. Even the famous Shannon’s paper [2] mentions a simple uni-, bi- and
tri-gram models but then it swiftly moves to word-based models.

There have been some attempts to use sub-word units (morphemes) for lan-
guage modelling, especially for speech recognition tasks [3] for morphologi-
cally rich languages like Finnish and Hungarian but they have not gone deeper.

Variable-length n-gram modelling is also closely related but the model
described in [4] is based rather on categories than on substrings from the raw
input data. Suffix array language model (SALM) based on words has been
proposed in [5].

3 Building the model

As input, any plain text (in any encoding but it is most convenient to use UTF-
8) can be used. In a previous version of the model all input characters were
encoded to a 7-bit code (the last bit was used for storing structure information).
Currently the model requires a simpler preprocessing: the data is taken as is—
as a sequence of bytes. Sentences are separated by a newline character. The only
pre-processing is lower-casing—quite common practice.

3.1 Suffix array, longest common prefix array

The next step is suffix array construction. Suffix array (SA) is a list of indexes
(positions) in the input data which are sorted according to lexicographical order
of suffixes starting at the corresponding positions in the data. The Table 1
shows an example of a SA constructed for string popocatepetl. The resulting
SA is in the third column. The last column contains longest common prefix
array (LCP) which corresponds to a number of common characters between
two consecutive suffixes in the SA.

I use libdivsufsort2 library for fast SA construction in O(n log n) time where
n is input data size in bytes. The size of an input is limited to 2 GB since longer

2 https://code.google.com/p/libdivsufsort/

https://code.google.com/p/libdivsufsort/


Character-based Language Model 5

Table 1: Suffix array example
I suffix SA sorted suffix LCP
0 popocatepetl 5 atepetl 0
1 opocatepetl 4 catepetl 0
2 pocatepetl 7 epetl 0
3 ocatepetl 9 etl 1
4 catepetl 11 l 0
5 atepetl 3 ocatepetl 0
6 tepetl 1 opocatepetl 1
7 epetl 8 petl 0
8 petl 2 pocatepetl 1
9 etl 0 popocatepetl 2

10 tl 6 tepetl 0
11 l 10 tl 1

data could not be encoded using 4-byte integer indexes. The size of a compiled
SA is O(n log n).

LCP is computed separately using an inverse SA in O(n) time and O(n)
space. To limit the size of LCP array, the highest possible number in LCP array
is 256 (1 B per item). Thus the longest substring which can be stored in the
model has length 256 characters (bytes).

3.2 Trie

Once SA and LCP are built, all prefixes from SA which occur more than N× are
put into trie structure. The N is the only parameter used in construction of the
trie. Each node in the trie stores probability (relative frequency) of occurrence
of the corresponding prefix in SA.

aaaabaabab
aaaabababa
aaabbaaaba
aaabbabab
aababba
aababbbab
aabbaabab
aabbabbab
aabbbbba
abaababbaba
abaabbaba
abaabbbbab
ababbaba

a

b

a

b

b

a

a

a

b

a

b

a

11

9

2

15

9

6

4

5

5

2

4

5

ababbbab
abbbbbaab
baaabaa
baaababab
baaabbba
baabaabbabba
baabbba
babaabba
bababbaaab
babbbababa
babbbbaba
bbabaaaa
bbabbbab

Fig. 1: Construction of a trie from an example suffix array



6 Vít Baisa

In Figure 1 you can see an example of suffix array turned into trie structure.
Only the upper part of the trie is shown. The numbers below the nodes
correspond to frequencies of the prefixes.

The trie is stored in a linear list—the tree structure of the trie is preserved
using integer indexes of the list. Each item of the list stores 4 slots: 1) an address
of the eldest children, 2) probability of the current prefix, 3) the character byte
itself and 4) binary true or false: if the current item is the last node in a row of
siblings.

The siblings are sorted according probability. In Figure 2 there is an example
for substring barb from a Czech model. It is obvious that after the prefix,
characters a, o, i and e are the most frequent. They occur in words like barbar,
barbora, barbie, barbecue, rebarbora etc. The dots in the Figure mean a space
skipped between the trie items (nodes). After substring barbo, the most probable
characters are r (75%) and in ř (22%). See the last two items in Figure 2.
Character ř is in fact represented by two nodes: a node with byte value 197
and its children node (153) but here I have simplified it.

b a r b o i ea
0.14

... ... ... ...
0.01 0.07 0.04 0.040.070.51 0.30

...
r
0.73

ř
0.22

Fig. 2: Trie structure

4 Language model

A language model is a prescription for assigning probabilities to an input data
(in this case a sequence of bytes). Here I present a straightforward algorithm
using the trie as an underlying data structure. It is important to emphasize
that this approach is only a first attempt at language modelling using the trie
described above. Further improvements are to be implemented.

Each node in a trie contains probability distribution of all following char-
acters (bytes). The longer is the path from root to a node, the more accurate is
the probability distribution (and also the lower entropy and perplexity) in the
node since a longer path means a longer context. Following is description of the
algorithm: how to compute a probability of any sequence of bytes.

The algorithm starts from the first byte in the data and from the root of
the trie. If the byte is among the root’s children, the initial probability 1.0 is
multiplied by the corresponding probability stored in the relevant child node.
The algorithm stores the position of the child node and repeats the procedure
for next bytes in the input data. If a current byte is not found among children
at a current position, the current prefix (defined by a path from the root to the



Character-based Language Model 7

current position) is shortened from the left (by one byte) and the shortened
path is translated to the root (the same character bytes but a different path).
It holds that if a path (sequence of bytes) is found wherever in the trie then it
must be translatable to the root of the trie. It is a property of the original suffix
array. After the translation, the lookup is repeated. If the byte is not found, the
path is shortened from the left again and translated again until the byte is found
among descendants of the last node in the translated path. It may occur that the
path is shortened to an empty path. In that case the procedure continues from
the root as at the beginning of the algorithm. Every time a byte from the input
data is found among a children of a current position, the overall probability is
multiplied by the probability of the children.

It is necessary that probability of any subsequence of the input data is
greater than 0 otherwise the result probability would be zero too. In n-
gram models the solution is achieved by smoothing language models using
techniques designed like Katz, Kneser-Ney or Good-Turing smoothing. In
CBLM, the problem of zero probability (caused by symbols which are in the
input data but do not occur in an input data more than N×) is solved by
assigning probability pr to all unseen symbols. Probability pr is taken from the
first level in trie—the complement of the sum of probabilities of all child nodes
of the root. For one English model trained on Orwell’s 1984 pr = 0.000018 since
some symbols (+, %) occurred less than N×.

The described procedure above can be slightly modified to obtain a random
text generator (see Section 6). The bytes are not read from the input but
generated randomly from distribution probabilities stored in nodes.

5 Intrinsic evaluation: entropy per byte

The standard way to evaluate language models is to measure entropy per word.
In the case of this model I use entropy H and perplexity PP per byte. The
formulas for test data b1 · · · bN and model m are as follow:

H(m) = − 1
N

N

∑
i=1

log p(bi)

PP = 2H(m)

where N is length of the test data and p(bi) is probability given by the
algorithm.

Table 2 shows results for English and Czech data. The models for English
has been built from British National Corpus and from George Orwell’s 1984.
The test data were Lewis Carroll’s Alice in Wonderland and George Orwell’s
1984. The models for Czech has been built from the Czech National Corpus,
Czech Wikipedia corpus (csWiki) and Czech Web corpus czTenTen3 [6] (csWeb).

3 http://www.sketchengine.co.uk/documentation/wiki/Corpora/czTenTen2

http://www.sketchengine.co.uk/documentation/wiki/Corpora/czTenTen2


8 Vít Baisa

Table 2: Evaluation of Czech and English models on Lewis Carroll’s Alice in
Wonderland and George Orwell’s 1984.

Model Test Size H PP
BNC2 Alice 330 M 2.286 4.879
BNC3 Alice 212 M 2.294 4.904
BNC2 1984 330 M 1.664 3.170
BNC3 1984 212 M 1.671 3.184

SYN20004 1984 362 M 1.837 3.574
csWiki5 1984 300 M 1.850 3.607
csWeb4 1984 312 M 1.571 2.972

Some observations from the tables follow. The BNC2 model has achieved
only a slightly better entropy and perplexity than BNC3 for both test data.
Notable is also the fact that both models assign considerably higher entropy
and perplexity to Alice. It is probably caused by the peculiar language of
Carroll. For comparison—the entropy of English has been estimated to 1.75 [7].
The best Czech model is csWeb5 which obtained 1.571 entropy for Orwell’s
1984.

The performance of the Czech and English models is quite stable. When
Markov model N parameter is fixed, performance (perplexity) differs substan-
tially when languages from different language families are evaluated. See also
the comparable performance of Hungarian and English random generator in
Section 6. Further intrinsic evaluation is to be carried out using a standard sta-
tistical language modelling benchmark, e.g. one billion word benchmark [8] or
Brown corpus.

6 Extrinsic evaluation: random sentence generator

It has been reported that a language model perplexity measure is not correlating
well with the evaluations of applications in which the model is used (e.g. [9]).
That is why some researchers prefer extrinsic evaluation methods over intrinsic
measures. To provide an extrinsic evaluation of the presented model I have
developed a simple random text generator based on CBLM.4 It offers models
for English, Georgian, Hungarian, Japanese, Russian, Turkish, Slovak, Czech
and Latin. Users may save generated sentences (Like link) which are then
available as favourite sentences at the bottom of the web page.

The algorithm is a modification of the language model algorithm. It gen-
erates a random stream of bytes and whenever it generates a second new line
character, the result is written to the output. By using the sequence of bytes
between two newlines, the generator is capable of generating texts roughly on
sentence level.

4 http://corpora.fi.muni.cz/cblm/generate.cgi

http://corpora.fi.muni.cz/cblm/generate.cgi


Character-based Language Model 9

To increase legibility, initial letters and named entities in the following
example sentences have been upper-cased. The source data for the examples
were as follow. English: British National Corpus, Czech: czTenTen (first 600 M
tokens), Hungarian: Hungarian Wikipedia, Latin: a Latin corpus and Slovak:
Slovak Wikipedia. In almost all cases N = 3.

English First there is the fact that he was listening to the sound of the shot and
killed in the end a precise answer to the control of the common ancestor of the
modern city of Katherine street, and when the final result may be the structure
of conservative politics; and they were standing in the corner of the room.
Czech Pornoherečka Sharon Stone se nachází v blízkosti lesa. ¶ Máme malý
byt, tak jsem tu zase. ¶ Změna je život a tak by nás nevolili. ¶ Petrovi se to
začalo projevovat na veřejnosti. ¶Vojáci byli po zásluze odměněni pohledem na
tvorbu mléka. ¶Graf znázorňuje utrpení Kristovo, jež mělo splňovat následující
kritéria.
Hungarian Az egyesület székhelye: 100 m-es uszonyos gyorsúszásban a követ-
kező években is részt vettek a díjat az égre nézve szójaszármazékot. ¶ Az
oldal az első lépés a tengeri akvarisztikával foglalkozó szakemberek számára
is ideális szállás költsége a vevőt terhelik.
Slovak Jeho dizajn je v zrelom veku, a to najmä v prípade nutnosti starala sa o
pomoc na rozdiel od mesta prechádza hranica grófstva Cork. ¶ V roku 2001 sa
začala viac zameraný na obdobie 2006 prestúpil do monastiera pri rieke Marica,
ktorú objavil W. Herschel 10. septembra 1785.
Latin Quinto autem anno andum civitates et per grin in multitudinem quae
uerae e aeque ad omne bonum. ¶ Augustinus: video et oratteantur in caelum
clamor eus adiutor meus, et uit, quam hoc crimen enim contentit et a debent.

7 Future work & conclusion

I have described a first approximation of the language model. In the future
I want to exploit more some properties of the trie model, e.g. probabilities
of sequences which follow a given sequence (not necessarily immediately
following it). This would allow to express connections (associations) between
any two byte sequences and to capture a broader context.

Acknowledgement This work was partially supported by the Ministry of
Education of CR within the LINDAT-Clarin project LM2010013 and by the
Czech-Norwegian Research Programme within the HaBiT Project 7F14047.

References

1. Bilmes, J.A., Kirchhoff, K.: Factored language models and generalized parallel
backoff. In: Proceedings of the 2003 Conference of the North American Chapter



10 Vít Baisa

of the Association for Computational Linguistics on Human Language Technology:
companion volume of the Proceedings of HLT-NAACL 2003–short papers-Volume 2,
Association for Computational Linguistics (2003) 4–6

2. Shannon, C.: A mathematical theory of communication. Bell Sys. Tech. J. 27 379–423
3. Creutz, M., Hirsimäki, T., Kurimo, M., Puurula, A., Pylkkönen, J., Siivola, V., Var-

jokallio, M., Arisoy, E., Saraçlar, M., Stolcke, A.: Morph-based speech recognition
and modeling of out-of-vocabulary words across languages. ACM Transactions on
Speech and Language Processing (TSLP) 5(1) (2007) 3

4. Niesler, T.R., Woodland, P.: A variable-length category-based n-gram language
model. In: Acoustics, Speech, and Signal Processing, 1996. ICASSP-96. Conference
Proceedings., 1996 IEEE International Conference on. Volume 1., IEEE (1996) 164–167

5. Zhang, Y., Vogel, S.: Suffix array and its applications in empirical natural language
processing. Technical report, Technical Report CMU-LTI-06-010, Language Technolo-
gies Institute, School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA (2006)

6. Suchomel, V.: Recent czech web corpora. In: 6th Workshop on Recent Advances in
Slavonic Natural Language Processing. Brno

7. Brown, P.F., Pietra, V.J.D., Mercer, R.L., Pietra, S.A.D., Lai, J.C.: An estimate of an
upper bound for the entropy of english. Comput. Linguist. 18(1) (March 1992) 31–40

8. Chelba, C., Mikolov, T., Schuster, M., Ge, Q., Brants, T., Koehn, P.: One Billion Word
Benchmark for Measuring Progress in Statistical Language Modeling. arXiv preprint
arXiv:1312.3005. 2013.

9. Iyer, R., Ostendorf, M. Meteer, M.: Analyzing and predicting language model
improvements. Automatic Speech Recognition and Understanding, 1997. 254–261


