
Tools for Fast Morphological Analysis
Based on Finite State Automata

Pavel Šmerk

Natural Language Processing Centre
Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic

smerk@fi.muni.cz

Abstract.
The paper presents a new implementation of some of Jan Daciuk’s
algorithms and tools for morphological analysis based on finite state
automata [1]. In particular, we offer a reimplemented version of the
tool which builds the automata from an input set of strings and of the
tool which performs the morphological analysis itself. In addition to 8-
bit versions we also offer “Unicode-aware” versions with the Unicode
characters encoded directly in the arcs of the automaton. The new
implementation is faster than the original one and its code is much more
simple and straightforward.

Keywords: morphological analysis, minimal deterministic finite state
automata

1 Introduction

Computational morphological analysis is one of the first steps in the automatic
treatment of natural language texts. Just after splitting the processed text
into words we usually need a tool which for each such word returns its
possible corresponding lexical entries (lemmata) and a relevant grammatical
information. For languages with limited compounding and with morphology
realized mainly by changes at the end of the word (Slavic languages can be
taken as an example), it is possible to describe their morphology by means of a
simple list of all words (word forms) and their possible interpretations and to
let the morphological analyzer only search this list for each input word.

Of course, it would not be feasible to search such a list directly due to its
huge size. However, the list can be viewed as a finite (formal) language and
consequently it can be represented by a minimal deterministic acyclic finite
state automaton, which can be pretty small. The morphological analyzer then
only follows a path in the automaton according to letters of the analyzed word
and, if a corresponding path exists, returns all possible continuations of this
path as a result.

In the following section we describe the input data format and illustrate
how the morphological analysis works. In the next section we present results

Aleš Horák, Pavel Rychlý (Eds.): Proceedings of Recent Advances in Slavonic Natural Language Processing,
RASLAN 2014, pp. 147–150, 2014. c○ NLP Consulting 2014

http://www.muni.cz/people/1648
http://www.muni.cz/people/3692
http://raslan2013.nlp-consulting.net/


148 Pavel Šmerk

of newly reimplemented tools and finally we discuss some possible future
modifications.

2 Data for morphological analysis

The data for morphological analysis are simply a list of all combinations of
recognized input strings and corresponding outputs of the analyzer, where
pairs of two words are encoded as pairs formed by the first word and a
difference between the words [2]. For example, in the following part of data
for word form→ lemma + tag analysis (with the original data on the right side
and the encoded form on the left side)

ježek:A:k1gMnSc1 ← ježek:ježek:k1gMnSc1
ježka:Cek:k1gMnSc2 ← ježka:ježek:k1gMnSc2
ježka:Cek:k1gMnSc4 ← ježka:ježek:k1gMnSc4
krtek:A:k1gMnSc1 ← krtek:krtek:k1gMnSc1
krtka:Cek:k1gMnSc2 ← krtka:krtek:k1gMnSc2
krtka:Cek:k1gMnSc4 ← krtka:krtek:k1gMnSc4

the (first) colon is a delimiter between the possible inputs and corresponding
outputs and the letters A and C as the first and the third letters of the alphabet
mean “to get the lemma delete n-1 (i.e. 0 or 2, respectively) last characters from
the word form and then attach the rest of the string (i.e. empty string or ek,
respectively)”. For example, the word form krtek will be analyzed as a lemma
krtek with a morphological tag k1gMnSc11 and a word form krtka as a lemma
krtek with morphological tags k1gMnSc2 or k1gMnSc42.

Such a list is then represented as a minimal deterministic acyclic finite
state automaton using Jan Daciuk’s algorithms for incremental building of
minimal DAFSAs [1]. The following graph corresponds to the non-minimized
automaton (trie)

j

e ž
e

k : A : k 1 g M n S c 1

k
a : C e k : k 1 g M n S c

2
4

k

r t
e

k : A : k 1 g M n S c 1

k
a : C e k : k 1 g M n S c

2
4

and the second graph corresponds to the minimized automaton used for the
morphological analysis.

j

e ž
e

k : A : k 1 g M n S c 1

k
a : C e k : k 1 g M n S c

2
4

k

r t

e

k

1 mole in nominative form
2 mole in genitive and accusative form



Tools for Fast Morphological Analysis 149

This representation dramatically reduces the size of the data (some particu-
lar figures can be seen later in Table 1). The lookup is then very simple: if the
analysed string concatenated with the delimiter is found in the automaton, then
each possible remaining path to a final state of the automaton encodes one of
possible analyses.

It means that there is no “real” analysis as any sophisticated algorithm
above some grammar model or a system of paradigms, but whole analysis is
only a simple — and therefore fast — dictionary search.

3 Experiments and results

3.1 Building the data for morphological analysis

We demonstrate our results on four sets of data. English and Russian morpho-
logical data are from the project FreeLing, the data for Czech are ours. We com-
pare our new implementation with the original Daciuk’s implementations3 and
with Java reimplementation of David Weiss4 from project Morfologik (it also of-
fers a more compact format at a price of a greater build time, for details refer
to [3]). For the purpose of comparison, our implementation produces binary
identical output (except for custom header) as the original Daciuk’s fsa_build
built with -DFLEXIBLE -DNEXTBIT -DSTOPBIT compile options. The first table
describes the data sets and in the last column is the size of the resulting automa-
ton (both input and output sizes are in bytes).

Table 1: Data sets used in the experiments.
data set input size words (lines) output size

EN 1,417,920 88,652 244,764
RU 114,605,988 2,844,516 3,639,960
CZ free 105,001,670 3,393,080 931,594
CZ full 828,973,970 27,764,093 3,795,423

The second table presents build times for the three compared tools.

Table 2: Build times in seconds.
data set fsa_build morfologik new implem.
EN 0.24 0.59 0.08
CZ free 12.63 7.50 4.19
RU 26.04 10.19 9.41
CZ full 121.41 57.21 41.71

3 www.eti.pg.gda.pl/katedry/kiw/pracownicy/Jan.Daciuk/personal/fsa.html,
version 0.51

4 http://sourceforge.net/projects/morfologik/, version 1.9.0

www.eti.pg.gda.pl/katedry/kiw/pracownicy/Jan.Daciuk/personal/fsa.html
http://sourceforge.net/projects/morfologik/


150 Pavel Šmerk

3.2 Morphological analyzer and UTF-8 versions

We also offer a new implementation of morphological analyzer. Unfortunately,
we were not able to make fsa_morph case conversions work even with Daciuk’s
original language files, thus it is difficult to compare analysis times in real
world scenarios. If we changed our analyser to immitate (somewhat broken)
fsa_morph output for 10 million Czech words from corpus, we are ca. 20 %
faster (12.51 s × 15.25 s).

Daciuk’s tools allow to be compiled with UTF-8 support, but it requires the
user to describe the case conversions and diacritics adding/removal. We have
UTF-8 variants of our tools which works with automata with UTF-8 labels and
our case conversions and diacritics restoration follows the Unicode standard,
which means one solution for all languages.

Except for speed, another advantage of our solution is much shorter and
straighforward code. It is not easy to make a fair comparison, but, for example,
files needed for fsa_build have more than 200 kB in total, whereas the code of
our new implementation has less than 20 kB. It is obvious that in case of such a
huge difference it is easier to maintain, adjust and further develop the shorter
code.

The new tools are accessible from http://nlp.fi.muni.cz/ma.

4 Future work

The new tools are ready to use and the presented results are promising,
but it is still a work in progress. We plan to further reduce both time and
final size of the automata construction. We want to employ some variable
length encoding of unicode codepoints, numbers and addresses (similar to [1],
but computationally simpler one). We suspect Daciuk’s “tree index” used to
discovering already known nodes during the automaton construction to be
slow for large data and we hope that simple hash will decrease the compilation
time significantly.

Acknowledgements This work has been partly supported by the Ministry of Educa-
tion of CR within the Lindat Clarin Center LM2010013.

References

1. Daciuk, J.: Incremental Construction of Finite-State Automata and Transducers, and
their Use in the Natural Language Processing. PhD thesis, Technical University of
Gdańsk, Gdańsk (1998)

2. Kowaltowski, T., Lucchesi, C.L., Stolfi, J.: Finite Automata and Efficient Lexicon
Implementation (1998) Technical Report IC-98-02, University of Campinas, São Paulo.

3. Daciuk, J., Weiss, D.: Smaller representation of finite state automata. Theoretical
Computer Science 450(0) (2012) 10–21

http://nlp.fi.muni.cz/ma

